If it's not what You are looking for type in the equation solver your own equation and let us solve it.
r^2-32r+12=0
a = 1; b = -32; c = +12;
Δ = b2-4ac
Δ = -322-4·1·12
Δ = 976
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{976}=\sqrt{16*61}=\sqrt{16}*\sqrt{61}=4\sqrt{61}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-4\sqrt{61}}{2*1}=\frac{32-4\sqrt{61}}{2} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+4\sqrt{61}}{2*1}=\frac{32+4\sqrt{61}}{2} $
| -10(2x-1)+7(3x-5)-8=4 | | r+15=4r-9 | | r^2-32^2+12=0 | | -1/5p=16 | | 19v=-171 | | x-7=(x-1)/4 | | 51x^2+9.25x+90=x | | X^+4=5x | | 3x=24-6 | | .78e(8+e)=2-1.25e | | 2y/7=-10 | | −2(x+8)2+32=0 | | 32x+45=180 | | 1-(5-x)/6=x-6 | | x÷3x=160 | | 10x18x-6+3=-3+3-6 | | 6x+3=x+8x | | 13/18=x/10 | | 0=-8+23t-16t^2 | | a^2+4a+6=7 | | n-(-6)=-2 | | 5×+18=3+2x | | 14+x/3=10 | | 8-(5-x)/2=4-x | | -13=4-b÷3 | | 12y+y−10y−2y=8 | | 2n^2-6n-18=16 | | (-x+2)4x-1=0 | | 2+3x=100 | | 230=8-7(6x+) | | 9g^2+2g-11=0 | | 6x+8x=18+5x |